

7

10

11

- Developing A Custom-Built Metal Cloud Chamber: Analysis of Aerosol
- 2 Coagulation at Low Humidities.
- 4 Nevil A. Franco, Kyle J. Gorkowski, Katherine B. Benedict
- 5 Earth and Environmental Science Division, Los Alamos National Laboratory, P.O. Box 1663
- 6 Los Alamos, NM, US 87545-1663
- 8 Corresponding Authors: Kyle Gorkowski (gorkowski@lanl.gov), Katherine Benedict
- 9 (kbenedict@lanl.gov)

Abstract

- 12 We are developing an intermediate size (906 L) cloud chamber, and this paper reports on the
- 13 design and initial characterization of dry aerosol experiments. Specifically, we are determining
- 14 wall-loss and coagulation correction factors using the observed size distribution measurements
- 15 for surrogates of common aerosol classes: sodium chloride, sucrose, and soot. Results show
- that, on average, sodium chloride, sucrose, and soot wall-loss rates converge to similar values
- on relatively short time scales (<1 hour). The fitted coagulation correction factor, W_c^{-1} , for soot
- 18 particles (1.23 \pm 0.312), indicates they adhere to each other more than sodium chloride

 (0.969 ± 0.524) and sucrose (1.16 ± 1.38) . This study lays the foundation for future experiments 20 at elevated humidity and supersaturation conditions to characterize the influence of particle 21 shape on coagulation and cloud parameters.

1 Introduction

Aerosol-cloud interactions remain one of the largest sources of uncertainty in the Earth's radiation budget. By directly scattering, absorbing solar radiation and indirectly influencing cloud formation, aerosols affect longwave and shortwave radiation in the Earth's atmosphere¹. Despite sustained research efforts, these impacts still pose significant challenges to our understanding of the aerosol cooling effect, estimated at $-0.86 \pm 0.56 \text{ W/m}^2$, and the effective anthropogenic radiative forcing of Earth's climate (estimated at $-1.25 \pm 0.85 \text{ W/m}^2$)¹. The complexity of aerosol sources, properties, and processing continues to hinder precise quantification of these forcing estimates.

A critical source of aerosols is wildfire smoke, which can influence radiative budgets up to a year depending on the transport and evolution of plumes^{2–4}. Under extreme burning conditions, wildfires can generate pyrocumulonimbus clouds, lofting large concentrations of aerosol into the upper troposphere and lower stratosphere^{2,5,6}. These smoke particles can exert prolonged effects on climate through chemical and physical processes such as condensation and coagulation^{7–9}. The fractal nature of soot particles further complicates our understanding of their indirect effects on cloud formation and radiative properties^{10–12}. For instance, during the Amazon biomass burning season, Koren et. al.¹³ reported a dramatic reduction in cumulus cloud

cover—from 38% under cleaner conditions to 0% during heavy smoke. However, Kaufman & Koren et. al. 14 observed an increased cloud cover in regions with higher column aerosol concentrations. These discrepancies underscore the complexity of aerosol-cloud interactions, which depend on various factors such as aerosol composition, hygroscopicity, size distribution, supersaturation, and the prevailing atmospheric stability 15. As wildfires increase in frequency and intensity due to climate change 16, refining our knowledge of how these aerosols evolve and ultimately affect cloud development is crucial for improving climate models and future predictions.

Beyond large-scale aerosol effects, aging aerosols undergo microphysical transformations that can drastically alter their role in cloud processes. Condensation of organics and the mixing of sulfate with black carbon (BC) have both been shown to influence cloud dynamics¹⁷. Recent work indicates that larger BC agglomerates may form preferentially at cloud tops, while the heaviest-coated BC particles are most likely to be scavenged by cloud droplets^{18,19}. Modeling these highly dynamic processes remains challenging, as it requires accurately representing particle growth, mixing states, and cloud interactions^{20–24}.

Cloud chambers are valuable research tools for investigating microphysical mechanisms under well-controlled conditions^{25–28}. Existing cloud chambers are their own institutional facility in the case of CLOUD at CERN²⁹, AIDA Chamber EUROCHAMP³⁰, and PI-chamber at MTU²⁶. All chambers however, come with artifacts—most notably, the loss of particles to chamber walls through gravity, diffusion, convection, and electrostatic forces^{31–34}. Previous studies have

highlighted the importance of accounting for both size-dependent and time-dependent wall
 losses^{35,36}.

In this paper, we introduce the development of a Los Alamos National Laboratory (LANL) cloud chamber, which is specifically designed to investigate coagulation processes under simulated conditions. We present initial data from experiments where aerosols were injected in a dry environment to quantify losses to chamber walls, dilution, and coagulation effects.

Different types of aerosols were examined to validate known aerosol behaviors and characterize coagulation. We further demonstrate the use of a python based aerosol package, Particula³⁷, to model coagulation and wall-loss rates. Through these studies, we aim to refine experimental design and advance understanding of how aerosols—particularly soot—undergo physical transformations that shape their role in cloud formation and climate forcing.

2 Chamber Development and Methods

2.1 Setup of chamber and experiments

The LANL chamber is in the first phase of development with control of both temperature and humidity to be added in future work. The 906 L chamber is made of 6 stainless steel walls which are inert and reduce the effects of electrostatic charge. The rectangular body and dimensions are shown in Figure 1. The chamber's joints are sealed with a fast cure marine adhesive caulk (Sika, Sikaflex 291) and the outside junctions where the walls intersected were

sealed using ZIP SystemTM Strech Tape (Huber Engineered Woods). Portholes were made for the top and bottom plates where wires and probes be placed for measurements in the chamber and for aerosols to flow in and out of the chamber. Unused portholes are sealed with Swagelok caps and those used for probes and wires are sealed with a rubber gasket or a Teflon ferrule. A leak test was performed by pressurizing the chamber by feeding clean air in and sealing every outlet then seal any leak detected.

Copper tubing lines (3/8") are used to supply aerosols to the chamber and deliver outflow sampling to instrumentation. Zero-air generators (T701 Teledyne Inc., USA) provide clean dry air to push aerosol to the chamber and additional dilution air using Teflon tubing (1/4"). Push flow enters at the bottom of the chamber, creating an upwards direction of flow. Aerosols are sampled from an outlet at the top of the chamber. A dilution flow is connected to the outlet line (88.9 mm from the outlet) to control aerosol concentrations and prevent overwhelming the sampling instruments. A minimum sampling flow rate of 1.5 L/min was needed to supply the instruments and we used a 1:5 ratio of push to dilution for the experiments presented here. This infers a residence timescale within the chamber of 604 minutes (10 hours) and half-life of 418 minutes (6.9 hours). The flow rates are controlled with mass flow controllers (MFC; Alicat). Prior to each experiment the chamber was flushed by pushing clean air with a flow of ~10 L/min for at least 3 hours to reach background (~0-10 cm⁻³).

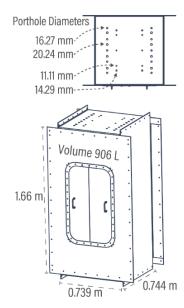


Figure 1. Schematic of LANL's 906 L chamber. The chamber has external dimensions of 1.66 m in height, 0.739 m in width, and 0.744 m in depth. The design includes 56 portholes with diameters ranging from 11.11 mm to 20.24 mm, shown across the top and mirrored on the bottom.

2.2 Aerosol Generation and Instrumentation

Two aqueous solutions and controlled combustion of dried biomaterial were used as the sources of aerosols. Sodium chloride (NaCl; Sigma-Aldrich) was chosen because it is a well-understood compound in aerosol studies. Sucrose (Sigma-Aldrich) was used to act as a secondary organic aerosol surrogate, and it is also a well-studied aerosol. Each were dissolved in deionized water (Milli-Q, $18.2~\text{M}\Omega$) in separate solutions and were put on an Atomizer Aerosol Generator (3079, TSI Inc., USA). The particles coming out of the atomizer passed through a silica

gel diffusion drier at a generation flow rate of \sim 2.4 L/min. The duration of aerosol injection varied based on the desired number concentration. To generate soot, 0.1-0.5 g samples of dried biomaterial *Poa pratensis* (Kentucky bluegrass) were weighed out, placed on a quartz boat and into a quartz-tube furnace (Carbolite Gero, TS1-1200, Verder Scientific, UK) that was set to 1000° C for a flaming combustion condition. Soot particles were pushed to the chamber by zero-air at 4 L/min for 5 minutes, an estimated time for complete combustion of the sample.

Aerosol size and number distributions downstream of the cloud chamber were measured with a scanning mobility particle sizer (SMPS) that consists of a Differential Mobility Analyzer (3081 DMA, TSI Inc., USA) and a Condensation Particle Counter (3752, TSI Inc., USA). Measurement settings were set to continuously scan for 3 minutes/scan; 160 seconds recording with 20 seconds of purging, measuring sizes 15.7 – 764.5 nm. Our experimental matrix consisted of 5 repeats of NaCl, 4 repeats of sucrose and 6 soot experiments with varying biomaterial mass, they are outlined in Supplement Information Table 1. In all experiments the first 6 hours of data were used to analyze results.

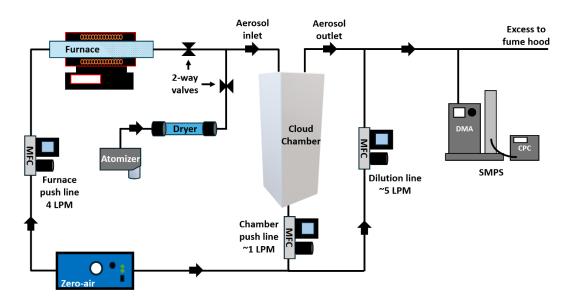


Figure 2. Schematic of experimental setup showing how aerosols are injected and sampled from the chamber.

3 Theory on Chamber Processes

The processing of data from the LANL chamber experiments involved two key steps to analyze the underlying aerosol processes of coagulation, wall loss, and dilution (chamber push line). First, we determined the observed size-dependent particle rates: $dN(D_p)/dt$. The measured size distributions were fitted to a two-mode lognormal distribution. The lognormal distribution parameters were optimized using the Python library SciPy's optimization routines, with the mean squared error as the cost function. We used multiple minimization methods and selected the best fit for each timestep based on the highest Pearson R-squared value. The

methods included Nelder-Mead (Simplex algorithm), Powell's method (Powell's conjugate direction method), L-BFGS-B (Limited-memory Broyden-Fletcher-Goldfarb-Shanno with Box constraints), TNC (Truncated Newton Conjugate-Gradient method), SLSQP (Sequential Least Squares Programming), and trust-constr (Trust Region Constrained method).

Second, we fitted these observed rates to theoretical rates calculated from Particula³⁷, a python-based aerosol microphysics package. The first step was to generate a new time series at a higher size resolution (log-spaced 250 bins), extrapolating to lower (20 nm) and upper (4 μ m) diameter limits. The size-dependent particle rate was then computed as the linear slope of 21 point moving window (10 before and 10 after). This final rate was subsequently used to fit the underlying aerosol processes in Equation 1 where $N(D_p)$ represents the number concentration of particles of diameter, D_p , K_{12} is the coagulation kernel, W_C^{-1} is the coagulation correction factor, N_1 and N_2 are the concentrations of particles in the bins for K_{12} , k_{flow} is the dilution rate, and β is the wall-loss rate.

148
$$\frac{dN(D_p)}{dt} = W_C^{-1} K_{12} N_1 N_2 - k_{flow} N(Dp) - \beta N(Dp)$$
 Equation 1

The coagulation term is governed by a Brownian Coagulation kernel, K_{12} , that captures the collision frequency between bin number concentrations (N_1 and N_2). This kernel is described in Seinfeld and Pandis³⁸ (Section 13; Fuchs form with alpha efficiency form of 13.56), and calculated with Particula. Since K_{12} does not account for other interactions (e.g. Coulomb interactions) that may lead to coagulation, W_C^{-1} , the coagulation correction factor, was

determined. In our analysis, W_c^{-1} is a free fit parameter to allow for un-modeled behaviors to be represented. The dilution rate, $k_{flow} = Q/V$, characterizes how the clean air flow rate (Q) is used to push sample flow out of the chamber volume (V). Finally, the wall-loss term, $\beta N(Dp)$, accounts for the size-dependent removal of particles to the chamber walls.

158
$$\beta = \frac{1}{LWH} \left(\frac{4H (L+W) \sqrt{k_e D}}{\pi} + v_p LW \times coth \left(\frac{\pi v_p}{4\sqrt{k_e D}} \right) \right)$$
 Equation 2

Equation 2 shows the wall-loss rate (β) varies with particle size, derived from a rectangular-chamber formulation adapted from Crump and Seinfeld³⁵ and Crump³⁶. It incorporates both diffusion-driven transport and gravitational settling. In this formulation, L, W, and H denote the chamber's length, width, and height, respectively; k_e is the eddy wall diffusivity (a free fit parameter); D is the particle diffusion coefficient; and v_p is the particle gravitational settling velocity.

4 Results and Discussion

4.1 Example Analysis

We show, in Figure 3, the L-BFGS-B optimization routine that was used on Equation 1 for experimental data from the smoke aerosol generated by combusting Kentucky bluegrass. Figure 3a shows the lognormal-fitted size distribution for the entire experiment, where particle growth is evident as the mode diameter shifts to larger sizes over the six-hour period. Figure 3b breaks

down the observed rates after 1.5 hours into three calculated, time-varying, size-dependent components: coagulation, dilution, and wall-loss. At that time, coagulation dominates, reducing particles around 100 nm ($^{\sim}0.16$ cm $^{-3}$ s $^{-1}$) and forming larger particles around 200 nm. From these fits we are specifically interested in the kernel correction factor to better understand the importance of agglomeration of freshly emitted BC fractal-like particles and how it changes in time.

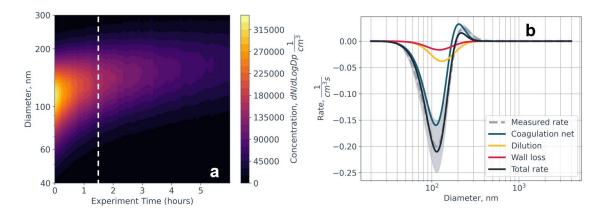


Figure 3. a) Time series of the lognormal-fitted size distribution and concentration for a soot experiment. The dashed line marks a time slice at approximately 1.5 hours. b) At this time slice, particle loss rates are calculated, revealing both loss and gain of particles due to coagulation. (The time series of rates for individual aerosol species are provided in the Supplement.) In this panel, the dashed gray line represents the measured rate with uncertainty (shaded gray), while the blue, yellow, and pink lines correspond to the coagulation process, dilution, and wall loss, respectively.

4.2 Wall-loss Comparison

In Figure 4a we show the average wall-loss rates for our three different aerosol types based on 4–8 experiments each. Only results with valid optimizations and an R-squared above 0.85 were included. In the sucrose experiments, this filter led to data gaps during the later time periods (2–6 hours) for inclusion in the analysis. To better compare with soot, we conducted additional NaCl experiments to have a more complete timeseries for one of the comparisons. The wall-loss rates during the first hour (< 1 hour) follow a similar trend apart from NaCl starting at a low wall-loss rate then rising close to a rate of 2 s⁻¹. These initial wall-loss rates are consistent with the general observation in chamber studies that early mixing processes and injection conditions can dominate particle loss. Typical ranges reported in smog-chamber experiments span from < 1 s⁻¹ to tens of s⁻¹ depending on injection flow and the use of a fan³⁹, particle species^{40,41}, and chamber geometry⁴⁰. Over longer times (> 1 hours), all three aerosol types converge toward similar wall-loss rates, in agreement with the literature indicating that chamber turbulence and gravitational settling diminish over time as mixing subsides.

Figure 4b shows the statistical distribution of the wall-loss rates for each aerosol type during the first hour and the subsequent five hours. NaCl and sucrose do not exhibit a large variance in diffusivity for the first hour compared to soot which is $1.12 \pm 1.55 \, \text{s}^{-1}$. NaCl, sucrose, and soot show mean wall-loss rates of $0.562 \pm 0.975 \, \text{s}^{-1}$, $0.233 \pm 0.286 \, \text{s}^{-1}$, and $0.201 \pm 0.267 \, \text{s}^{-1}$, respectively. This convergence to relatively similar values is consistent with past observations in

smog-chamber experiments, where turbulent mixing dissipates, and the system approaches a quasi-steady loss rate such as the CMU Teflon chamber^{33,34}, the CESAM chamber⁴⁰, and the AIR chamber³⁹. However, NaCl and soot sucrose experiments display greater variability than soot, likely due to residual chamber turbulence and differences in particle surface charge stemming from their distinct generation methods (aerosolization vs. combustion).

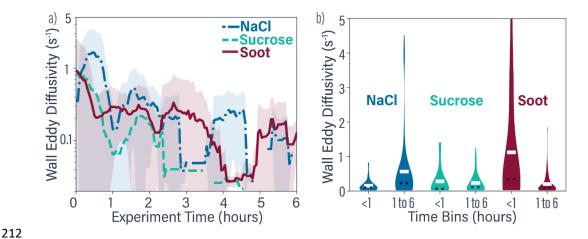


Figure 4. a) Average time series of the calculated wall eddy diffusivity for NaCl (blue), sucrose (green), and soot (red). Only fits with valid optimizations and r-squared greater than 0.85 are included. b) Violin plots showing the mean (..), median (white bar) and overall distribution range of wall eddy diffusivity values for each aerosol type in two-time bins (<1 hour and 1–6 hours). The width of each colored region represents the relative density of data points at that value.

4.3 Coagulation Corrections

To investigate the influence of interparticle forces on aerosol coagulation, we fitted a coagulation correction factor that would account for van der Waals forces, shape, and/or Coulomb interactions in the coagulation rate. When $W_C^{-1} = 1$, collisions are effectively "elastic," with no net enhancement or inhibition. In contrast, $W_C^{-1} > 1$ indicates that coagulation is enhanced (e.g. due to attractive forces, favorable particle morphology, or turbulence), whereas $W_C^{-1} < 1$ implies reduced coagulation (e.g. electrostatic repulsion or other inhibiting effects). In figure 5a., the soot experiments show an initial period where $W_C^{-1} > 1$, which may be explained by the fractal nature of soot aggregates that can promote sticking or chain formation upon collision. By the third hour in all experiments, accounting for the variation the average coagulation corrections extend above and below 1. During this later phase, particle concentrations ($< 3 \times 10^3$ cm⁻³) no longer sustain significant coagulation losses, consistent with prior studies showing that coagulation becomes negligible under low concentration conditions^{34,42,43}.

Figure 5b shows the distribution of coagulation corrections for these time periods. All

Figure 5b shows the distribution of coagulation corrections for these time periods. All three aerosols show a mean W_C^{-1} value around 1 (0.969 ± 0.524 for NaCl, 1.16 ± 1.38 for sucrose, and 1.23 ± 0.312 for soot), suggesting a slight repulsion or negligible net sticking among particles. However, the standard deviations do encompass W_C^{-1} = 1. Soot exhibits a slightly higher coagulation corrections initially followed by reduced values (0.941 ± 0.307) in later periods. These observations align with the notion that both particle morphology (e.g.,

fractal soot structures) and injection-induced turbulence can transiently enhance coagulation, but the effect diminishes as particles coagulate.

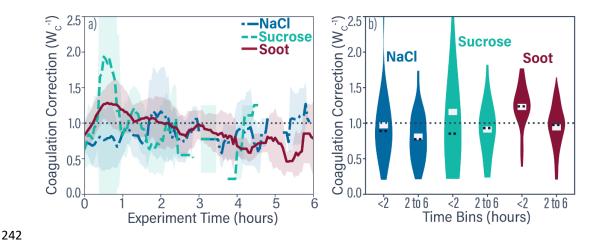


Figure 5. a) Average time series of the calculated coagulation correction for NaCl (blue), sucrose (green), and soot (red). Only fits with valid optimizations and r-squared greater than 0.85 are included. b) Violin plots showing the mean (..), median (white bar) and range of the calculated coagulation correction for each aerosol type averaged across replicate experiments for the indicated time bins (similar to Figure 4b).

5 Discussion

Our initial experiments in this new cloud chamber focused on dry conditions and a set of aerosols to quantify how particles evolve in the absence of humidity (<10% relative humidity).

Despite the relatively simple setup—no temperature or humidity control—two key insights will

be used in future humidified experiments. First, the wall-loss rates converged to similar values across all aerosol types after the first hour, indicating that early differences largely arose from injection flow conditions and subsequent turbulence. Over time, these chamber conditions stabilized, reinforcing the well-documented notion that particle wall losses approach a quasi-steady state as mixing subsides.

A second important finding is that coagulation within the chamber is most pronounced during the initial phase of each experiment. Though this is more uncertain due to larger relative errors. Soot showed signs of coagulation enhancement, potentially attributable to its fractal structure. Once total number concentrations fell below a few thousand particles per cubic centimeter, coagulation slowed considerably, consistent with the literature. Collectively, these observations highlight the dynamic interplay between wall loss, particle morphology, and injection protocols in shaping the early stages of aerosol evolution in chamber studies.

Our results also shed light on the influence of particle composition and shape. While aerosols like NaCl and sucrose exhibited expected behavior—initial collision enhancements near unity—soot displayed additional complexity. Early-time coagulation factors for soot were moderately elevated, suggesting that fractal aggregates can promote sticking or increased collisional radius. Over longer times, the coagulation rates for all three aerosols converged to near unity or below, indicating negligible net enhancement under steady-state conditions. These observations set the stage for more detailed investigations of fractal-like particles under high humidity environments (>90% relative humidity).

Although these initial experiments focused on low humidities, the chamber design allows for temperature and humidity control to be integrated in future work. Extending to more complex atmospherically relevant aerosol mixtures—such as soot mixed with organic vapors or inorganic salts—will further elucidate aerosol aging pathways and cloud interactions.

Additionally, the use of more advanced aerosol instrumentation will improve the characterization of particle morphologies and mixing states that evolve during cloud processing.

6 Conclusion

The custom-built 906 L stainless-steel chamber provided reproducible measurements of particle size distributions under dry conditions, confirming its suitability for controlled aerosol research. Although initial turbulence drove high wall-loss rates, these converged to stable values across NaCl, sucrose, and soot—underscoring that injection protocols and mixing strongly influence early aerosol behavior. The chamber's intermediate size and flexible design for future temperature and humidity controls make it a useful platform to investigate aerosol-cloud interactions more comprehensively. Integrating additional measurements of particle shape, chemical composition, and mixing state will further clarify the complexities of aerosol aging and cloud formation. Building on these dry experiments, upcoming work at higher humidity will reveal how aerosol coagulation and phase changes affect cloud processes such as droplet activation and scavenging. By disentangling coagulation, dilution, and wall-loss mechanisms, this chamber ultimately enables rigorous study of aerosol transformations—particularly for

293 fractal soot—in cloud-relevant environments, helping advance both scientific understanding 294 and climate prediction. 295 296 Author contributions. NAF performed the experiments, contributed to the analysis of the 297 results, and wrote the manuscript. KJG was responsible for the design of the chamber and the 298 study, development of the data analysis methods, and contributed to the writing of the 299 manuscript. KBB contributed to the design of the study, analysis of the results, and contributed 300 to the writing of the manuscript. 301 302 Competing interests. The authors declare no competing interests. 303 304 Code/Data availability. The python data analysis code is available from corresponding authors. 305 306 Acknowledgments. The authors would like to thank Hannah Brink, Ryan Farley, James E. Lee, 307 and Matt Nelson for their feedback on the manuscript. Release Number LA-UR-25-22994. 308 309 Financial support. Research presented in this article was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project number 310

311 20230248ER. This work was supported by the U.S. Department of Energy through the Los 312 Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National 313 Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy 314 (Contract No. 89233218CNA000001). 315 316 References 317 1. Intergovernmental Panel On Climate Change (Ipcc). Climate Change 2021 – The Physical 318 Science Basis: Working Group I Contribution to the Sixth Assessment Report of the 319 Intergovernmental Panel on Climate Change. (Cambridge University Press, 2023). 320 doi:10.1017/9781009157896. 321 2. Yu, P. et al. Black carbon lofts wildfire smoke high into the stratosphere to form a persistent 322 plume. Science 365, 587-590 (2019). 323 3. D'Angelo, G., Guimond, S., Reisner, J., Peterson, D. A. & Dubey, M. Contrasting Stratospheric Smoke Mass and Lifetime From 2017 Canadian and 2019/2020 Australian Megafires: Global 324 325 Simulations and Satellite Observations. JGR Atmospheres 127, e2021JD036249 (2022). 326 4. Guimond, S. R., Reisner, J. & Dubey, M. The Dynamics of Megafire Smoke Plumes in Climate 327 Models: Why a Converged Solution Matters for Physical Interpretations. J Adv Model Earth 328 Syst 15, e2022MS003432 (2023).

- 329 5. Rodriguez, B., Lareau, N. P., Kingsmill, D. E. & Clements, C. B. Extreme Pyroconvective
- 330 Updrafts During a Megafire. Geophysical Research Letters 47, e2020GL089001 (2020).
- 331 6. Leach, R. N. & Gibson, C. V. Assessing the Potential for Pyroconvection and Wildfire Blow Ups.
- 332 *J. Operational Meteor.* 47–61 (2021) doi:10.15191/nwajom.2021.0904.
- 333 7. Fromm, M., Servranckx, R., Stocks, B. J. & Peterson, D. A. Understanding the critical elements
- of the pyrocumulonimbus storm sparked by high-intensity wildland fire. Commun Earth
- 335 Environ 3, 243 (2022).
- 336 8. Reisner, J. M. et al. Informed Multi-Scale Approach Applied to the British Columbia Fires of
- 337 Late Summer 2017. JGR Atmospheres 128, e2022JD037238 (2023).
- 338 9. Gorkowski, K. et al. Insights into Pyrocumulus aerosol composition: black carbon content and
- organic vapor condensation. *Environ. Sci.: Atmos.* **4**, 80–87 (2024).
- 340 10. Cotton, W. R. & Anthes, R. A. Storm and Cloud Dynamics. (Academic Press, San Diego,
- 341 2010).
- 342 11. Das, S., Colarco, P. R., Oman, L. D., Taha, G. & Torres, O. The long-term transport and
- radiative impacts of the 2017 British Columbia pyrocumulonimbus smoke aerosols in the
- 344 stratosphere. Atmos. Chem. Phys. 21, 12069–12090 (2021).
- 345 12. June, N. A. et al. Aerosol size distribution changes in FIREX-AQ biomass burning plumes:
- the impact of plume concentration on coagulation and OA condensation/evaporation. Atmos.
- 347 Chem. Phys. 22, 12803-12825 (2022).

- 348 13. Koren, I., Kaufman, Y. J., Remer, L. A. & Martins, J. V. Measurement of the Effect of
- Amazon Smoke on Inhibition of Cloud Formation. Science 303, 1342–1345 (2004).
- 350 14. Kaufman, Y. J. & Koren, I. Smoke and Pollution Aerosol Effect on Cloud Cover. Science
- **313**, 655–658 (2006).
- 352 15. Feingold, G., Remer, L. A., Ramaprasad, J. & Kaufman, Y. J. Analysis of smoke impact on
- 353 clouds in Brazilian biomass burning regions: An extension of Twomey's approach. J. Geophys.
- 354 Res. 106, 22907–22922 (2001).
- 355 16. Cunningham, C. X., Williamson, G. J. & Bowman, D. M. J. S. Increasing frequency and
- intensity of the most extreme wildfires on Earth. Nat Ecol Evol 8, 1420–1425 (2024).
- 357 17. Ching, J., West, M. & Riemer, N. Quantifying Impacts of Aerosol Mixing State on
- 358 Nucleation-Scavenging of Black Carbon Aerosol Particles. Atmosphere 9, 17 (2018).
- 359 18. Taylor, J. W. et al. Size-dependent wet removal of black carbon in Canadian biomass
- 360 burning plumes. *Atmos. Chem. Phys.* **14**, 13755–13771 (2014).
- 361 19. Zanatta, M. et al. Airborne investigation of black carbon interaction with low-level,
- persistent, mixed-phase clouds in the Arctic summer. Atmos. Chem. Phys. 23, 7955–7973
- 363 (2023).
- 364 20. Riemer, N., West, M., Zaveri, R. A. & Easter, R. C. Simulating the evolution of soot mixing
- state with a particle-resolved aerosol model. J. Geophys. Res. 114, 2008JD011073 (2009).

- 366 21. Zaveri, R. A., Barnard, J. C., Easter, R. C., Riemer, N. & West, M. Particle-resolved
- 367 simulation of aerosol size, composition, mixing state, and the associated optical and cloud
- 368 condensation nuclei activation properties in an evolving urban plume. J. Geophys. Res. 115,
- 369 2009JD013616 (2010).
- 370 22. Ching, J., Riemer, N. & West, M. Black carbon mixing state impacts on cloud
- 371 microphysical properties: Effects of aerosol plume and environmental conditions. JGR
- 372 *Atmospheres* **121**, 5990–6013 (2016).
- 373 23. Yao, Y., Dawson, M. L., Dabdub, D. & Riemer, N. Evaluating the Impacts of Cloud
- 374 Processing on Resuspended Aerosol Particles After Cloud Evaporation Using a Particle-
- Resolved Model. *JGR Atmospheres* **126**, e2021JD034992 (2021).
- 376 24. Yang, F., Hoffmann, F., Shaw, R. A., Ovchinnikov, M. & Vogelmann, A. M. An
- 377 Intercomparison of Large-Eddy Simulations of a Convection Cloud Chamber Using Haze-
- 378 Capable Bin and Lagrangian Cloud Microphysics Schemes. J Adv Model Earth Syst 15,
- 379 e2022MS003270 (2023).
- 380 25. Khlystou, A., Kos, G. P. A. & Ten Brink, H. M. A High-Flow Turbulent Cloud Chamber.
- 381 *Aerosol Science and Technology* **24**, 59–68 (1996).
- 382 26. Chang, K. et al. A Laboratory Facility to Study Gas-Aerosol-Cloud Interactions in a
- Turbulent Environment: The Π Chamber. Bulletin of the American Meteorological Society 97,
- 384 2343–2358 (2016).

- 385 27. Niedermeier, D. et al. Characterization and first results from LACIS-T: a moist-air wind
- tunnel to study aerosol-cloud-turbulence interactions. Atmos. Meas. Tech. 13, 2015–2033
- 387 (2020).
- 388 28. Shao, Y. et al. Characterisation of the Manchester Aerosol Chamber facility. Atmos.
- 389 *Meas. Tech.* **15**, 539–559 (2022).
- 390 29. The Cloud Collaboration. A study of the link between cosmic rays and clouds with a
- 391 cloud chamber at the CERN PS. Preprint at https://doi.org/10.48550/ARXIV.PHYSICS/0104048
- 392 (2001).
- 393 30. Wagner, R. et al. Chamber Simulations of Cloud Chemistry: The AIDA Chamber. in
- 394 Environmental Simulation Chambers: Application to Atmospheric Chemical Processes (eds.
- 395 Barnes, I. & Rudzinski, K. J.) vol. 62 67–82 (Kluwer Academic Publishers, Dordrecht, 2006).
- 396 31. Corner, J. & Pendlebury, E. D. The Coagulation and Deposition of a Stirred Aerosol. *Proc.*
- 397 *Phys. Soc. B* **64**, 645–654 (1951).
- 398 32. Fotou, G. P. & Pratsinis, S. E. A Correlation for Particle Wall Losses by Diffusion in Dilution
- 399 Chambers. Aerosol Science and Technology 18, 213–218 (1993).
- 400 33. Wang, N., Jorga, S. D., Pierce, J. R., Donahue, N. M. & Pandis, S. N. Particle wall-loss
- 401 correction methods in smog chamber experiments. Atmos. Meas. Tech. 11, 6577–6588
- 402 (2018).

- 403 34. Mahfouz, N. G. A. & Donahue, N. M. Primary ion diffusion charging and particle wall loss
- 404 in smog chamber experiments. Aerosol Science and Technology 54, 1058–1069 (2020).
- 405 35. Crump, J. G. & Seinfeld, J. H. Turbulent deposition and gravitational sedimentation of an
- aerosol in a vessel of arbitrary shape. *Journal of Aerosol Science* **12**, 405–415 (1981).
- 407 36. Crump, J. G., Flagan, R. C. & Seinfeld, J. H. Particle Wall Loss Rates in Vessels. Aerosol
- 408 *Science and Technology* **2**, 303–309 (1982).
- 409 37. Particula [computer software]. uncscode/particula: v0.1.3. Zenodo
- 410 https://doi.org/10.5281/ZENODO.6634653 (2025).
- 411 38. Seinfeld, J. H. & Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to
- 412 Climate Change. (John Wiley & Sons, Incorporated, Newark, 2016).
- 413 39. Zong, T. et al. A new smog chamber system for atmospheric multiphase chemistry study:
- design and characterization. *Atmos. Meas. Tech.* **16**, 3679–3692 (2023).
- 415 40. Wang, J. et al. Design of a new multi-phase experimental simulation chamber for
- 416 atmospheric photosmog, aerosol and cloud chemistry research. Atmos. Meas. Tech. 4, 2465–
- 417 2494 (2011).
- 41. Li, K. et al. Smog chamber study on aging of combustion soot in isoprene/SO2/NOx
- system: Changes of mass, size, effective density, morphology and mixing state. Atmospheric
- 420 Research **184**, 139–148 (2017).

- 421 42. Hussein, T. et al. Deposition rates on smooth surfaces and coagulation of aerosol
- particles inside a test chamber. *Atmospheric Environment* **43**, 905–914 (2009).
- 423 43. Yu, H. et al. Experimental and Numerical Study on the Gravitational Deposition and
- 424 Coagulation of Aerosols. Front. Energy Res. 10, 840503 (2022).